FEASIBILITY OF EMG-BASED CONTROL OF SHOULDER MUSCLE FNS VIA ARTIFICIAL NEURAL NETWORK R. F. Kirsch¹, P.P. Parikh¹, A.M. Acosta¹, F.C.T. van der Helm² ¹Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA ² Technical University at Delft, Delft, Netherlands Abstract - We investigated the potential use of EMG recordings from voluntary shoulder muscles individuals with C5 spinal cord injury to automatically control the stimulation to paralyzed shoulder muscles in a task-appropriate manner. A musculoskeletal model of the human shoulder and elbow was modified to have maximum muscle forces appropriate for C5 spinal cord injury, including completely and partially paralyzed muscles. Inverse model simulations generated muscle activation levels that were used to train an artificial neural network (ANN) to automatically generate appropriate stimulation patterns for the "paralyzed" muscles based on "voluntary" muscle activations. We found that substantial additional shoulder strength could be provided by assuming that just two paralyzed muscles (pectoralis major and latissimus dorsi) were stimulated. Further, the needed activations of these "stimulated" muscles could be predicted with reasonable accuracy using the activation levels just two "voluntary" muscles (trapezius and rhomboids) as ANN inputs. Keywords - FNS, FES, shoulder, EMG, artificial neural network, musculoskeletal model, spinal cord injury, paralysis, ANN # Introduction Spinal cord injuries at C5-C6 typically result in paralysis of several important shoulder muscles (e.g., pectoralis major, latissimus dorsi, and serratus anterior) and result in a significant loss in upper arm mobility [5]. In particular, these individuals have difficulty performing many activities of daily living that require manipulation ability in front of the body (horizontal flexion motions such as stabbing food with a fork), reaching above horizontal (e.g., reaching for books on a shelf), and adduction (e.g., for body weight). Functional shifting neuromuscular stimulation (FNS) can be used to produce contractions in upper extremity muscles that restore some of these functions, but providing the user with control of this stimulation in a natural yet effective manner is a significant challenge. Methods used previously to control FNS for hand grasp and release rely upon the motion of another body part (contralateral shoulder or ipsilateral wrist) and are not appropriate for the shoulder because there are too many degrees of freedom for these to be controlled in a reasonably natural manner. We have investigated the possibility of using electromyographic (EMG) signals from shoulder muscles with retained voluntary control to control the stimulation to shoulder muscles that are paralyzed. Individuals with C5 tetraplegia typically have paralysis of several important muscles (e.g., pectoralis major and latissimus dorsi),but retain at least partial voluntary control over a number of other muscles (e.g., deltoid). We are investigating the use of EMG signals from voluntary muscles to automatically detect the motion intended by the user and then to assist them in an appropriate manner through stimulated contractions to achieve this motion over a wider range, with greater force, and with better movement accuracy. Previous work [1] has demonstrated that the EMG signals from the muscles with voluntary control in individuals with C5 tetraplegia contain a significant amount of information about shoulder motions and indicate that it should be possible to determine where the arm is positioned (joint angles) and where it is going (velocities and accelerations). However, these methods did not indicate how to stimulate paralyzed muscles to augment the desired motions. In this study, we used a musculoskeletal model of the human shoulder to determine the feasibility of directly predicting needed muscle stimulation patterns from the voluntary activation patterns of other, non-paralyzed muscles. Simulations performed with this model indicate that shoulder horizontal flexion and adduction can be significantly improved in C5 tetraplegia using FNS four or fewer muscles. A simple artificial neural network was successfully trained using model-generated data to predict needed stimulation patterns for the "paralyzed" muscles from the activation patterns of muscles that would be expected to retain voluntary control. This implies that automatic control of shoulder FNS via EMG recordings should be possible. The methods developed here could also be applied to other shoulder motions or to other joint systems. # **METHODS** The basic approach taken in this study is illustrated in Figure 1. Figure 1(a) shows the eventual practical system whose feasibility was evaluated in the present study. EMG activities in a set of voluntary muscles are used as inputs to an artificial neural network (ANN) that has been trained to determine task-appropriate stimulation | Report Documentation Page | | | |--|--------------------|--| | Report Date
25 Oct 2001 | Report Type
N/A | Dates Covered (from to) | | Title and Subtitle | | Contract Number | | Feasibility of EMG-Based Co. VIA Artificial Neural Networl | | Grant Number | | | | Program Element Number | | Author(s) | | Project Number | | | | Task Number | | | | Work Unit Number | | Performing Organization Name(s) and Address(es) Department of Biomedical Engineering Case Western Reserve University Cleveland, OH | | Performing Organization Report Number | | Sponsoring/Monitoring Agency Name(s) and Address(es) US Army Research, Development & Standardization Group (UK) PSC 802 Box 15 FPO AE 09499-1500 | | Sponsor/Monitor's Acronym(s) | | | | Sponsor/Monitor's Report Number(s) | | Distribution/Availability Sta
Approved for public release, d | | | | | | EE Engineering in Medicine and Biology Society, October for entire conference on cd-rom. | | Abstract | | | | Subject Terms | | | | Report Classification unclassified | | Classification of this page unclassified | | Classification of Abstract unclassified | | Limitation of Abstract
UU | | Number of Pages | | ' | parameters for a set of paralyzed muscles. Figure 1 (b) illustrates the approach taken here, where a musculoskeletal model of the human shoulder [7] was modified to reflect C5 SCI, and used in simulation to estimate the activities in voluntary muscles as well as the stimulation needed for a set of selected paralyzed muscles. Thus, the model simulations were used in this feasibility study to replace experimental procedures in real human subjects. These model-generated muscle activities were then used to develop the ANN controller. ## Musculoskeletal model of the shoulder Inverse simulations using a three-dimensional musculoskeletal model of the human shoulder and elbow [7] were used to estimate muscle activation patterns needed to maintain the arm in a series of specified postures. The model includes descriptions of the bones of the shoulder mechanism (thorax, clavicle, humerus, and scapula) and the elbow (radius and ulna), thirty-one shoulder and elbow muscles, and three extrascapular ligaments. Each of the muscles, many of which have large attachment sites, is divided into as many as six independent elements [6]. The maximum force that can be produced by each muscle is limited by its physiological cross sectional area (PCSA), estimated for the able-bodied population by cadaver dissection [7]. The able-bodied model was modified in this study to reflect C5 tetraplegia by decreasing the maximum *voluntary* forces that could be produced by muscles with partial or total paralysis. The actual maximum voluntary forces that can be produced by the shoulder muscles in an individual with a given level of tetraplegia will vary with the details of the injury. For this study, representative maximum voluntary force values for a generic C5 individual were estimated based upon (1) the median Manual Muscle Test grades of 22 individuals with C5 tetraplegia obtained during clinical evaluations and (2) the known segmental innervation of these muscles [4] and the level of spinal cord injury. In a first set of simulations, the effects of FNS of (coracobrachialis:Cb, paralyzed muscles pectoralis minor:PMi, serratus anterior:SA, latissimus dorsi:LD, thoracic pectoralis major:PMT, and clavicular pectoralis major:PMC) were evaluated by assuming that a completely paralyzed muscle could produce force if stimulated. In these simulations, the maximum force of each paralyzed muscle was assumed to be 50% of the same muscle in the ablebodied model. This arbitrary assumption (also made in [9]) probably represents a best-case scenario. It was also assumed that each of the several sub-elements of each "stimulated" muscle were always activated at the same relative level, simulating uniform FNS of the whole muscle. Inverse static simulations were performed with the model to compute the set of muscle forces that minimized the sum of squared muscle stresses across all muscles while balancing various applied loads in various humeral postures. The internal kinematics of the shoulder (i.e., scapular and clavicular positions and orientations relative to the thorax) were assumed to be identical to the able-bodied results previously presented [8, 2]. Note that this would be an ideal goal to be achieved in an actual neuroprosthesis. Simulations were performed at 21 static locations throughout the workspace of the humerus (30, 60, 90, 120, and 150° of elevation in three planes: abduction (coronal), flexion (sagittal), and scapular (30° from coronal toward sagittal)). In different sets of simulations, the maximum external loads in abduction, adduction, horizontal flexion, and horizontal extension that could be sustained by the "voluntary" musculature for each posture were determined by systematically increasing the simulated load until no combination of available muscle forces could be found to balance the load. ## Artificial neural network The musculoskeletal model simulations described produced sets of muscle activations, both above "voluntary" and "stimulated", for each of the conditions tested. An artificial neural network (ANN) was trained to predict needed "stimulation" levels in the "stimulated" muscles using the activations of a small set of "voluntary" muscles. A static, two-layer ANN was used in this study, with "tansig" neurons in the hidden layer and linear neurons in the output layer. This structure was chosen because it has been shown to be capable of predicting arbitrary non-linear input/output relationships [3]. The network was trained via backpropagation using the model-estimated muscle activations ("voluntary" ones for inputs, "stimulated" ones for outputs) from all arm positions and external loads of 20, 40, 80, and 100 percent of the maximum sustainable load. The training procedure iterated until the sum of squared errors (SSE) between the actual variables (model-estimated "paralyzed" muscle activations) and those predicted by the neural network changed by less than 1% over 50 iterations. The network was trained for a minimum of 50 iterations to insure that the algorithm had not converged to a local minimum. The predictive ability of the ANN was evaluated at all simulated arm positions for external loads of 60% of the maximum sustainable load in each direction for each posture (a total of 84 conditions over 21 positions). Predictive ability was quantified in two ways. First, the root-mean-squared (RMS) error between the musculoskeletal-generated activations and the ANNpredicted activations was computed. Because the activations ranged between 0 and 1, this RMS error is expressed in terms of maximum activation. Second, the forces that would be produced at the end of the humerus by the set of ANN predicted muscle activations were computed using the musculoskeletal model and compared to the forces that were originally applied in the musculoskeletal model simulations. The differences between these forces indicate the mechanical (and presumably the functional) impact of ANN-based activation prediction errors. ## RESULTS each panel indicates the activations predicted by the two- The static artificial neural network (ANN) was trained as described above to predict needed activation patterns for four "stimulated" muscles (SA, Cb, LD, and PMT) using sets of two (TC and Rh) or four (TC, Rh, BiS, and "voluntary" muscles as inputs. Figure 2 illustrates the predictive ability of the ANN for each of the stimulated muscles four primary actions. Each panel in this figure plots relative (to maximum) activation along the radial direction, while the angular coordinate indicates the angular position of the arm in elevation. The three rows of panels illustrate results for the three different planes of elevation examined. The thick black lines each panel indicate the activation originally computed by the musculoskeletal model, the target for subsequent ANN predictions. The thin solid line in input ANN, while the dotted line indicates the activations predicted by the four-input ANN. As described above, the model is generating an external force corresponding to 60% of the maximum that can be sustained in each of the three indicated directions (horizontal flexion for the columns A and B, adduction for columns C and D, and abduction for column E). Note that the ANN predicted activations for "stimulated" muscles for force directions other than those presented here (e.g., PM activation during abduction), but the conditions included in Figure 2 required the best prediction of activation levels and were thus the most functionally relevant. In general, the four-input ANN predicted needed muscle activations better than the two-input ANN. Activation of the SA (shown for abduction forces in Figure 2, column E) was needed in all postures at all elevation angles, and the network accurately predicted these activation levels across all arm positions and external loading conditions. The average RMS prediction errors for the two- and four-input ANNs were 9 and 7%, respectively. The Cb (column B) was needed mostly for horizontal flexion forces in each of three elevation planes tested, with average RMS errors of 15 and 12% for two- and four-input ANNs, respectively. The PM was also important for horizontal flexion across all arm postures (column A), with some limited action required in adduction (column C) at lower elevation angles. Average prediction errors for PM were 14 and 12%, respectively for the two- and four-input ANNs. The LD (column D) was primarily needed for adduction movements, and was predicted with average RMS errors of 8 and 7% for two- and four-input ANNs, respectively. **Figure 3:** Force vectors predicted by ANN-predicted "stimulation" compared to desired forces. To evaluate the mechanical impact of the ANNbased activation prediction errors on the actual moments predicted at the shoulder, the musculoskeletal model was used to compute the external forces at the distal end of the humerus that would result from the ANN-predicted activations. These forces were calculated for each of the various conditions (different arm postures at 60% force in four different directions) and compared to the external force originally applied in the musculoskeletal simulations. Ideally these forces would be identical. Figure 3 presents the results of these calculations for nine different arm postures (elevation angles of 30°, 90°, and 150° in the abduction, flexion, and scapular planes). In each panel, the thick gray lines indicate the musculoskeletal modelgenerated forces in horizontal flexion (to the left), horizontal extension (to the right), abduction (up) and adduction (down). The four open circles in each panel indicate the same forces generated using activations predicted from the two-input ANN, while the filled circles indicate the same force predictions of the four-input ANN. In almost all arm postures, both the two- and four-input ANNs accurately predicted both the magnitude and direction of the needed external forces, indicating that the modest errors in the ANN-based activation predictions would have only minor mechanical consequences. ### **CONCLUSIONS** We have examined the feasibility of automatically controlling the stimulation to paralyzed shoulder muscles in a task-appropriate manner using the activity in other shoulder muscles with retained voluntary control. A three-dimensional able-bodied musculoskeletal model of the human elbow and shoulder was modified to reflect C5 tetraplegia and used to train an artificial neural network (ANN) to determine the ability of a small number of "voluntary" muscle activations to predict the stimulation needed in "paralyzed" shoulder muscles. These simulations suggest that a maximum of four paralyzed muscles will need to be stimulated to maximize horizontal flexion and adduction forces and that two to four "voluntary" muscles will be sufficient to automatically control the stimulation to the paralyzed muscles. Although these results will have to be verified through experimental implementation, the model-based findings presented here indicate that a shoulder neuroprosthesis for horizontal flexion and adduction should be easily feasible with existing technology. #### ACKNOWLEDGMENT This work was funded by the US National Institutes of Health (R29-HD32653) and by the VA Rehab. Research and Development FES Center. ## REFERENCES - [1] Au, A. and R. Kirsch (submitted). "EMG-based Prediction of Shoulder and Elbow Kinematics in Able-bodied and Spinal Cord Injured Individuals." IEEE Transactions on Rehabilitation Engineering 8: 471-480, 2000. - [2] de Groot, J. H. (1998). The Shoulder: A Kinematic and Dynamic Analysis of Motion and Loading. Delft, The Netherlands, Technische Universiteit Delft: 23-37. - [3] Demuth, H. and B., Mark (1998). Neural Network Toolbox User's Guide: For Use with Matlab, The Mathworks, Inc. - [4] Kendall, F. P. and E. K. McCreary (1983). Muscles, Testing and Function. Baltimore, Williams & Wilkins. - [5] Trombly, C. A. (1989). Occupational Therapy for Physical Dysfunction, Williams & Wilkins. - [6] Van der Helm, F. C. and R. Veenbaas (1991). "Modelling the mechanical effect of muscles with large attachment sites: application to the shoulder mechanism." J Biomech 24(12): 1151-63. - [7] van der Helm, F. C. (1994). "A finite element musculoskeletal model of the shoulder mechanism." J Biomech 27(5): 551-69. - [8] van der Helm, F. C. and G. M. Pronk (1995). "Threedimensional recording and description of motions of the shoulder mechanism." J Biomech Eng 117(1): 27-40. - [9] Yamaguchi, G. T. and F. E. Zajac (1990). "Restoring unassisted natural gait to paraplegics via functional neuromuscular stimulation: a computer simulation study." IEEE Trans Biomed Eng 37(9): 886-902.